3.217 \(\int \frac{(a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=198 \[ \frac{8 a^2 (A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}-\frac{2 a^2 (A-5 C) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d}-\frac{2 (A-C) \sin (c+d x) \sqrt{\sec (c+d x)} \left (a^2 \sec (c+d x)+a^2\right )}{3 d}+\frac{4 a^2 (A-C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 A \sin (c+d x) (a \sec (c+d x)+a)^2}{3 d \sqrt{\sec (c+d x)}} \]

[Out]

(4*a^2*(A - C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a^2*(A + C)*Sqrt[Cos[c
+ d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) - (2*a^2*(A - 5*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x]
)/(3*d) + (2*A*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) - (2*(A - C)*Sqrt[Sec[c + d*x]]*(
a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.402225, antiderivative size = 198, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4087, 4018, 3997, 3787, 3771, 2639, 2641} \[ -\frac{2 a^2 (A-5 C) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d}-\frac{2 (A-C) \sin (c+d x) \sqrt{\sec (c+d x)} \left (a^2 \sec (c+d x)+a^2\right )}{3 d}+\frac{8 a^2 (A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{4 a^2 (A-C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 A \sin (c+d x) (a \sec (c+d x)+a)^2}{3 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(4*a^2*(A - C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a^2*(A + C)*Sqrt[Cos[c
+ d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) - (2*a^2*(A - 5*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x]
)/(3*d) + (2*A*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) - (2*(A - C)*Sqrt[Sec[c + d*x]]*(
a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(3*d)

Rule 4087

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rule 4018

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(b*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*(m + n
)), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d*n
) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && Ne
Q[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 3997

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> -Simp[(b*B*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*(n + 1)), x] + Dist[1/(n + 1), Int[(d*C
sc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f
, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 \int \frac{(a+a \sec (c+d x))^2 \left (2 a A-\frac{3}{2} a (A-C) \sec (c+d x)\right )}{\sqrt{\sec (c+d x)}} \, dx}{3 a}\\ &=\frac{2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2 (A-C) \sqrt{\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d}+\frac{4 \int \frac{(a+a \sec (c+d x)) \left (\frac{3}{4} a^2 (5 A-C)-\frac{3}{4} a^2 (A-5 C) \sec (c+d x)\right )}{\sqrt{\sec (c+d x)}} \, dx}{9 a}\\ &=-\frac{2 a^2 (A-5 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2 (A-C) \sqrt{\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d}+\frac{8 \int \frac{\frac{9}{4} a^3 (A-C)+\frac{3}{2} a^3 (A+C) \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx}{9 a}\\ &=-\frac{2 a^2 (A-5 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2 (A-C) \sqrt{\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d}+\left (2 a^2 (A-C)\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{3} \left (4 a^2 (A+C)\right ) \int \sqrt{\sec (c+d x)} \, dx\\ &=-\frac{2 a^2 (A-5 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2 (A-C) \sqrt{\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d}+\left (2 a^2 (A-C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{3} \left (4 a^2 (A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{4 a^2 (A-C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{8 a^2 (A+C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}-\frac{2 a^2 (A-5 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2 (A-C) \sqrt{\sec (c+d x)} \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [C]  time = 2.00566, size = 191, normalized size = 0.96 \[ \frac{a^2 e^{-i d x} \sec ^{\frac{3}{2}}(c+d x) (\cos (d x)+i \sin (d x)) \left (-4 i (A-C) \left (1+e^{2 i (c+d x)}\right )^{3/2} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i (c+d x)}\right )+16 (A+C) \cos ^{\frac{3}{2}}(c+d x) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+A \sin (c+d x)+A \sin (3 (c+d x))+12 i A \cos (2 (c+d x))+12 i A+4 C \sin (c+d x)+12 C \sin (2 (c+d x))-12 i C \cos (2 (c+d x))-12 i C\right )}{6 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

[Out]

(a^2*Sec[c + d*x]^(3/2)*(Cos[d*x] + I*Sin[d*x])*((12*I)*A - (12*I)*C + (12*I)*A*Cos[2*(c + d*x)] - (12*I)*C*Co
s[2*(c + d*x)] + 16*(A + C)*Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] - (4*I)*(A - C)*(1 + E^((2*I)*(c + d*
x)))^(3/2)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + A*Sin[c + d*x] + 4*C*Sin[c + d*x] + 12*C*S
in[2*(c + d*x)] + A*Sin[3*(c + d*x)]))/(6*d*E^(I*d*x))

________________________________________________________________________________________

Maple [B]  time = 5.308, size = 651, normalized size = 3.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x)

[Out]

4/3*a^2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(4*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+4*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-6*A*EllipticE(cos(1/2*d
*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-4*A*sin(
1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+4*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+6*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)
^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-12*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4
-2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+A*sin(1/2*d
*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),2^(1/2))-3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d
*x+1/2*c),2^(1/2))+7*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)
^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C a^{2} \sec \left (d x + c\right )^{4} + 2 \, C a^{2} \sec \left (d x + c\right )^{3} +{\left (A + C\right )} a^{2} \sec \left (d x + c\right )^{2} + 2 \, A a^{2} \sec \left (d x + c\right ) + A a^{2}}{\sec \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((C*a^2*sec(d*x + c)^4 + 2*C*a^2*sec(d*x + c)^3 + (A + C)*a^2*sec(d*x + c)^2 + 2*A*a^2*sec(d*x + c) +
A*a^2)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)